75 research outputs found

    Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study

    Get PDF
    This randomized, open-label, active-controlled, dose-finding phase IIb study evaluated the efficacy and safety of trabedersen (AP 12009) administered intratumorally by convection-enhanced delivery compared with standard chemotherapy in patients with recurrent/refractory high-grade glioma. One hundred and forty-five patients with central reference histopathology of recurrent/refractory glioblastoma multiforme (GBM) or anaplastic astrocytoma (AA) were randomly assigned to receive trabedersen at doses of 10 or 80 µM or standard chemotherapy (temozolomide or procarbazine/lomustine/vincristine). Primary endpoint was 6-month tumor control rate, and secondary endpoints included response at further timepoints, survival, and safety. Six-month tumor control rates were not significantly different in the entire study population (AA and GBM). Prespecified AA subgroup analysis showed a significant benefit regarding the 14-month tumor control rate for 10 µM trabedersen vs chemotherapy (p= .0032). The 2-year survival rate had a trend for superiority for 10 µM trabedersen vs chemotherapy (p = .10). Median survival for 10 µM trabedersen was 39.1 months compared with 35.2 months for 80 µM trabedersen and 21.7 months for chemotherapy (not significant). In GBM patients, response and survival results were comparable among the 3 arms. Exploratory analysis on GBM patients aged ≤55 years with Karnofsky performance status >80% at baseline indicated a 3-fold survival at 2 and 3 years for 10 µM trabedersen vs chemotherapy. The frequency of patients with related or possibly drug-related adverse events was higher with standard chemotherapy (64%) than with 80 µM trabedersen (43%) and 10 µM trabedersen (27%). Superior efficacy and safety for 10 µM trabedersen over 80 µM trabedersen and chemotherapy and positive risk–benefit assessment suggest it as the optimal dose for further clinical development in high-grade glioma

    Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase

    Full text link
    BACKGROUND Cerebrospinal fluid (CSF) protein analysis is an important element in the diagnostic chain for various central nervous system (CNS) pathologies. Among multiple existing approaches to interpreting measured protein levels, the Reiber diagram is particularly robust with respect to physiologic inter-individual variability, as it uses multiple subject-specific anchoring values. Beyond reliable identification of abnormal protein levels, the Reiber diagram has the potential to elucidate their pathophysiologic origin. In particular, both reduction of CSF drainage from the cranio-spinal space as well as blood-CNS barrier dysfunction have been suggested ρas possible causes of increased concentration of blood-derived proteins. However, there is disagreement on which of the two is the true cause. METHODS We designed two computational models to investigate the mechanisms governing protein distribution in the spinal CSF. With a one-dimensional model, we evaluated the distribution of albumin and immunoglobulin G (IgG), accounting for protein transport rates across blood-CNS barriers, CSF dynamics (including both dispersion induced by CSF pulsations and advection by mean CSF flow) and CSF drainage. Dispersion coefficients were determined a priori by computing the axisymmetric three-dimensional CSF dynamics and solute transport in a representative segment of the spinal canal. RESULTS Our models reproduce the empirically determined hyperbolic relation between albumin and IgG quotients. They indicate that variation in CSF drainage would yield a linear rather than the expected hyperbolic profile. In contrast, modelled barrier dysfunction reproduces the experimentally observed relation. CONCLUSIONS High levels of albumin identified in the Reiber diagram are more likely to originate from a barrier dysfunction than from a reduction in CSF drainage. Our in silico experiments further support the hypothesis of decreasing spinal CSF drainage in rostro-caudal direction and emphasize the physiological importance of pulsation-driven dispersion for the transport of large molecules in the CSF

    Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy

    Get PDF
    BACKGROUND: Tracking of post-registration head motion is one of the major problems in frameless stereotaxy. Various attempts in detecting and compensating for this phenomenon rely on a fixed reference device rigidly attached to the patient's head. However, most of such reference tools are either based on an invasive fixation technique or have physical limitations which allow mobility of the head only in a restricted range of motion after completion of the registration procedure. METHODS: A new sensor-based reference tool, the so-called Dynamic Reference Frame (DRF) which is designed to allow an unrestricted, 360° range of motion for the intraoperative use in pulsed DC magnetic navigation was tested in 40 patients. Different methods of non-invasive attachment dependent on the clinical need and type of procedure, as well as the resulting accuracies in the clinical application have been analyzed. RESULTS: Apart from conventional, completely rigid immobilization of the head (type A), four additional modes of head fixation and attachment of the DRF were distinguished on clinical grounds: type B1 = pin fixation plus oral DRF attachment; type B2 = pin fixation plus retroauricular DRF attachment; type C1 = free head positioning with oral DRF; and type C2 = free head positioning with retroauricular DRF. Mean fiducial registration errors (FRE) were as follows: type A interventions = 1.51 mm, B1 = 1.56 mm, B2 = 1.54 mm, C1 = 1.73 mm, and C2 = 1.75 mm. The mean position errors determined at the end of the intervention as a measure of application accuracy were: 1.45 mm in type A interventions, 1.26 mm in type B1, 1.44 mm in type B2, 1.86 mm in type C1, and 1.68 mm in type C2. CONCLUSION: Rigid head immobilization guarantees most reliable accuracy in various types of frameless stereotaxy. The use of an additional DRF, however, increases the application scope of frameless stereotaxy to include e.g. procedures in which rigid pin fixation of the cranium is not required or desired. Thus, continuous tracking of head motion allows highly flexible variation of the surgical strategy including intraoperative repositioning of the patient without impairment of navigational accuracy as it ensures automatic correction of spatial distortion. With a dental cast for oral attachment and the alternative option of non-invasive retroauricular attachment, flexibility in the clinical use of the DRF is ensured

    Switches, Excitable Responses and Oscillations in the Ring1B/Bmi1 Ubiquitination System

    Get PDF
    In an active, self-ubiquitinated state, the Ring1B ligase monoubiquitinates histone H2A playing a critical role in Polycomb-mediated gene silencing. Following ubiquitination by external ligases, Ring1B is targeted for proteosomal degradation. Using biochemical data and computational modeling, we show that the Ring1B ligase can exhibit abrupt switches, overshoot transitions and self-perpetuating oscillations between its distinct ubiquitination and activity states. These different Ring1B states display canonical or multiply branched, atypical polyubiquitin chains and involve association with the Polycomb-group protein Bmi1. Bistable switches and oscillations may lead to all-or-none histone H2A monoubiquitination rates and result in discrete periods of gene (in)activity. Switches, overshoots and oscillations in Ring1B catalytic activity and proteosomal degradation are controlled by the abundances of Bmi1 and Ring1B, and the activities and abundances of external ligases and deubiquitinases, such as E6-AP and USP7

    Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A Prospective Longitudinal Observational Study

    Get PDF
    BACKGROUND: Current classification of traumatic brain injury (TBI) is suboptimal, and management is based on weak evidence, with little attempt to personalize treatment. A need exists for new precision medicine and stratified management approaches that incorporate emerging technologies. OBJECTIVE: To improve characterization and classification of TBI and to identify best clinical care, using comparative effectiveness research approaches. METHODS: This multicenter, longitudinal, prospective, observational study in 22 countries across Europe and Israel will collect detailed data from 5400 consenting patients, presenting within 24 hours of injury, with a clinical diagnosis of TBI and an indication for computed tomography. Broader registry-level data collection in approximately 20 000 patients will assess generalizability. Cross sectional comprehensive outcome assessments, including quality of life and neuropsychological testing, will be performed at 6 months. Longitudinal assessments will continue up to 24 months post TBI in patient subsets. Advanced neuroimaging and genomic and biomarker data will be used to improve characterization, and analyses will include neuroinformatics approaches to address variations in process and clinical care. Results will be integrated with living systematic reviews in a process of knowledge transfer. The study initiation was from October to December 2014, and the recruitment period was for 18 to 24 months. EXPECTED OUTCOMES: Collaborative European NeuroTrauma Effectiveness Research in TBI should provide novel multidimensional approaches to TBI characterization and classification, evidence to support treatment recommendations, and benchmarks for quality of care. Data and sample repositories will ensure opportunities for legacy research. DISCUSSION: Comparative effectiveness research provides an alternative to reductionistic clinical trials in restricted patient populations by exploiting differences in biology, care, and outcome to support optimal personalized patient management

    Brain death and postmortem organ donation: Report of a questionnaire from the CENTER-TBI study

    Get PDF
    Background: We aimed to investigate the extent of the agreement on practices around brain death and postmortem organ donation. Methods: Investigators from 67 Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study centers completed several questionnaires (response rate: 99%). Results: Regarding practices around brain death, we found agreement on the clinical evaluation (prerequisites and neurological assessment) for brain death determination (BDD) in 100% of the centers. However, ancillary tests were required for BDD in 64% of the centers. BDD for nondonor patients was deemed mandatory in 18% of the centers before withdrawing life-sustaining measures (LSM). Also, practices around postmortem organ donation varied. Organ donation after circulatory arrest was forbidden in 45% of the centers. When withdrawal of LSM was contemplated, in 67% of centers the patients with a ventricular drain in situ had this removed, either sometimes or all of the time. Conclusions: This study showed both agreement and some regional differences regarding practices around brain death and postmortem organ donation. We hope our results help quantify and understand potential differences, and provide impetus for current dialogs toward further harmonization of practices around brain death and postmortem organ donation

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Disruption of Lateral Efferent Pathways: Functional Changes in Auditory Evoked Responses

    Full text link
    The functional consequences of selectively lesioning the lateral olivocochlear efferent system in guinea pigs were studied. The lateral superior olive (LSO) contains the cell bodies of lateral olivocochlear neurons. Melittin, a cytotoxic chemical, was injected into the brain stem using stereotaxic coordinates and near-field evoked potentials to target the LSO. Brain stem histology revealed discrete damage to the LSO following the injections. Functional consequences of this damage were reflected in depressed amplitude of the compound action potential of the eighth nerve (CAP) following the lesion. Threshold sensitivity and N1 latencies were relatively unchanged. Onset adaptation of the cubic distortion product otoacoustic emission (DPOAE) was evident, suggesting a reasonably intact medial efferent system. The present results provide the first report of functional changes induced by isolated manipulation of the lateral efferent pathway. They also confirm the suggestion that changes in single-unit auditory nerve activity after cutting the olivocochlear bundle are probably a consequence of disrupting the more lateral of the two olivocochlear efferent pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41379/1/10162_2002_Article_3018.pd
    corecore